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Abstract

The politicization of the COVID-19 pandemic in the United States has raised ques-
tions about the integrity and accuracy of death reporting, particularly in jurisdictions
with elected, partisan coroners. Using mortality data from the CDC and manually
collected data on county-level death certification systems and coroner party affiliation
where applicable, I examine the parallel systems of appointed medical examiners and
elected coroners and investigate the effect of partisanship on reported COVID-19 deaths.
Cross-sectional comparisons do not seem to suggest counties with coroners report fewer
deaths than those with medical examiners, and difference-in-differences specifications
reveal limited evidence of a statistically significant but not economically meaningful
effect of partisanship on reported COVID death counts.

1 Introduction

Since the initial outbreak of COVID-19 (Coronavirus Disease 2019) in the United States
in 2020, measuring deaths that result directly or indirectly from the pandemic has become
an essential part of accurately assessing its impact (Zylke & Bauchner, 2020). Challenges
abound, and official death numbers are widely believed to be a massive undercount of the
true toll (Kiang et al., 2020; Stokes, Lundberg, Bor & Bibbins-Domingo, 2021; Woolf et al.,
2020; Woolf et al., 2021). One of those challenges involves the proper attribution of deaths
to COVID-19. Public health experts have underscored the importance of death certification
in informing the public and guiding the policy response to the pandemic, and identified
drawbacks in the current system, such as the lack of COVID testing in many cases and the
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inadequate training received by death certifiers (Gill & DeJoseph, 2020; Stokes, Lundberg,
Bor & Bibbins-Domingo, 2021).

Concerns have been raised, and anecdotal evidence documented, about the fragmented
death investigation systems in the United States. The American population is served by a
mix of coroner and medical examiner (ME) systems at both state and local levels. Medical
examiners are appointed officials who are medical professionals that received specialized
training in death certification and forensic autopsy. In contrast, coroners are usually elected
and politically partisan, and often laypeople who are neither trained in death certification
nor medicine at large (Hanzlick & Combs, 1998; Institute of Medicine (US) Committee for
the Workshop on the Medicolegal Death certification System [IOM Committee], 2003). This
lack of professional knowledge and training is sometimes assumed to lead to a larger number
of unattributed COVID-19 deaths in jurisdictions with coroners compared to those with MEs
(Stokes, Lundberg, Bor & Bibbins-Domingo, 2021). Possibly exacerbating the problem is the
politicization of the pandemic in the United States, with views clearly divided along party
lines among both elected officials and the public. Some media reports and analysis have
pointed to possible underreporting of COVID deaths by elected Republican Party coroners
out of political motivations (Bergin et al., 2021; “Politics of Death”, 2022). A Republican
coroner of a Missouri county reportedly said his office “[didn’t] do COVID deaths”, and
attributed no deaths to COVID-19 in 2021 (Bergin et al., 2021). Such reports suggest
the possibility that partisan politics may incentivize partisan coroners to manipulate death
numbers in their jurisdictions.

Despite the theorizing and anecdotes, to my knowledge, no empirical analysis has been
conducted on the effect of coroner partisanship on COVID-19 death reporting. A major ob-
stacle may be data availability on partisanship: states and counties differ vastly in whether
and how information about coroner elections and party affiliations is made available, and
a comprehensive account of the nationwide picture would require extensive manual data
collection and verification. In this paper, I employ an original, manually-collected data set
containing such information, combine it with mortality data from the United States Centers
for Disease Control and Prevention (CDC) and investigate the effect of death certification
systems and partisanship. Taking into consideration the interval-censored nature of the mor-
tality data due to privacy concerns, I estimate both regular, left-censored tobit models and
interval-censored models to account for suppressed death counts, and also use the probability
of having a low and suppressed death count as a dependent variable in alternative specifi-
cations. A cross-sectional comparison of coroner and ME counties does not reveal different
levels of underreporting, and my models produce mixed evidence on systemic underreporting
in Republican-coroner counties compared to Democratic-coroner ones.
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This paper contributes to a nascent and growing literature that seeks to understand the
toll of COVID-19 in America. A major focus of the literature is to estimate excess deaths,
i.e. the difference between actual and expected numbers of deaths (Zylke & Bauchner, 2020).
When performed at subnational levels, these exercises consistently reveal large geographic
variations in the percentage of excess deaths not directly attributed to COVID-19, as pointed
out by Woolf et al. (2020) and Woolf et al. (2021) at the state level, and by Stokes, Lundberg,
Elo, et al. (2021) and Ackley et al. (2022) at the county level, to name a few examples.
My work partially aims to test one possible explanation for such disparity. It is also closely
related to research that examines the politicization of the COVID-19 pandemic in the United
States and its public health consequences, ranging from individual behaviors (e.g. Allcott
et al., 2020; Grossman et al., 2020) to local government policy (e.g. Holman et al., 2020) to
possible fraudulent death reporting practices (Eutsler et al., 2023). This paper is the first
to focus on the death investigation system and seeks to test the theory of political influence
on death certifiers.

The rest of the paper is structured as follows. Section 2 reviews the facts and findings
on the politicization of COVID-19 in the United States and outlines the country’s two main
types of death investigation system. Section 3 provides a summary of the data and sample.
Section 4 describes the empirical methodology. Section 5 presents the results and offers
possible interpretations. Section 6 discusses the findings and Section 7 concludes.

2 Background

Politicization of COVID-19 in the United States

The emergence of COVID-19 in the United States coincided with a period of intense political
polarization in the country. Unsurprisingly, the public discourse on the pandemic also largely
evolved into a polarized political debate during its course. Ever since the virus’s initial
outbreak, top-ranking and high-profile Republican Party figures repeatedly downplayed the
threat posed by the virus, endorsed conspiracy theories and pseudoscientific treatments, used
racist language to refer to the disease, contradicted public health recommendations issued
by the CDC, and dismissed Democratic officials’ concerns and policy responses as political
stunts (Bolsen & Palm, 2022; Halpern, 2020). Both polarization and politicization were also
amplified by the news media (Hart et al., 2020); conservative media in particular spread and
promoted COVID-related misinformation (Motta et al., 2020).

As a consequence, perceptions, attitudes and behavior among the American public all
displayed sharp partisan divisions. Two longitudinal and cross-national studies conducted
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by Stroebe et al. (2021) show that the extent of such politicization increased over time, and
was greater in the U.S. than in a comparison group of countries. Compared to self-identified
liberals or Democrats, conservatives or Republicans were less concerned about the health risk
posed by COVID-19 and less trusting in mainstream media’s reporting on the pandemic and
public health recommendations from medical experts (Allcott et al., 2020; Kerr et al., 2021;
Rothgerber et al., 2020). They also reported less adherence to health-protection protocols
such as hand-washing, quarantining, mask-wearing and social distancing (Allcott et al., 2020;
Rothgerber et al., 2020; Kerr et al., 2021; Stroebe et al., 2021), were more skeptical of and less
likely to receive COVID vaccines (Bolsen & Palm, 2022), and less supportive of aggressive
government policies both in pandemic control and on related public issues (Gadarian et
al., 2021). Moreover, Gadarian et al. (2021) find that the partisan divide cannot be fully
explained by other correlating variables, such as consumption of conservative media or the
local COVID-19 death toll.

The self-reported differences are corroborated by empirical data. Google search data indi-
cates Democrats showed greater interest in social distancing (Grossman et al., 2020). Using
mobile phone location data, Allcott et al. (2020), Grossman et al. (2020) and Gollwitzer
et al. (2020) all find that residents in U.S. counties with higher Democratic vote shares
in the 2016 presidential election were more likely to practice social distancing and comply
with stay-at-home orders. These disparities between counties are also subsequently linked
to higher COVID-19 infection and death rates in Republican-leaning counties (Gollwitzer et
al., 2020).

Furthermore, local policymaking seems to reflect the partisan differences, too. Demo-
cratic governors were generally more prompt in adopting a variety of social-distancing poli-
cies than Republican ones (Adolph et al., 2021; Grossman et al., 2020). Holman et al. (2020)
find the ideological leaning of local populations to be one of the factors that affected how
early municipal governments issued stay-at-home orders. There is also evidence on polit-
ical influences on COVID death reporting: Eutsler et al. (2023) employ Benford’s law, a
phenomenon observed in naturally occurring numerical data sets, and find evidence of un-
derreporting of COVID-19 deaths; in addition, the extent of such underreporting in a county
is related to the county’s partisan leaning in the 2016 presidential election vote as well as
the party affiliation of the state governor. All of this points to the possibility of a partisan
line that divides death investigation systems in America as well.

Death certification during COVID-19 in the United States

Death certificates are a crucial source of information about public health. During the
COVID-19 pandemic, data from death certificates formed the basis of the mortality statistics
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published by the CDC’s National Center for Health Statistics, and informed national and
subnational monitoring of the pandemic’s progression and severity (Gill & DeJoseph, 2020).
Normally, natural-cause deaths (such as those resulting from viral infections) that occur in
the hospitals or long-term care/hospice facilities are certified by a facility physician (Bhullar
et al., 2022; Gill & DeJoseph, 2020). These deaths thus do not require reporting to medical
examiner or coroner (ME/C) offices, which together form the medicolegal death investigation
system in the United States and are legally mandated to investigate unnatural or unexpected
deaths (IOM Committee, 2003). Nevertheless, ME/Cs played an important role in certifying
COVID-related deaths during the pandemic for a number of reasons. Firstly, all deaths that
take place outside hospitals or care facilities are reportable to ME/C offices (Bhullar et al.,
2022), and such deaths accounted for a meaningful portion of COVID deaths (Pathak et
al., 2021). More importantly, while statutes that specify the types of death reportable to a
ME/C differ by jurisdiction, most jurisdictions require reporting of deaths that involve dis-
eases that may constitute a threat to public health, shifting confirmed and suspected COVID
deaths into ME/Cs’ purview, and allowing ME/Cs to revise death certificates when neces-
sary (Gill & DeJoseph, 2020; Kiang et al., 2020; National Vital Statistics System, 2023). In
practice, ME/Cs are extensively involved in certifying and counting COVID-related deaths
(Zavattaro, 2023).

ME and coroner systems coexist in the United States today, and the type of office over-
seeing medicolegal death investigation varies by state and county. According to the CDC
(2023b), 22 states and the District of Columbia exclusively use ME systems; among them,
16 states and D.C. have a centralized system at the state level, and 6 have a county- or
district-based system. The remaining 28 states use coroner systems in at least some parts
of the state, with 14 of them using a county- or district-based coroner system, and the other
14 using a county- or district-based system with a combination of MEs and coroners. The
coroner system originated in 9th- or 10th-century England, and its current use in the United
States is a vestige of the British colonist era (Hanzlick & Combs, 1998). The modern incar-
nation of the ME systems first emerged in 1877, and it is the consensus among today’s public
health experts that ME systems are clearly preferable to coroner systems (IOM Committee,
2003), but the latter persist. From the 1960s to the 1980s, a period of rapid transition from
coroner systems to ME systems took place nationwide, followed by a “lull in the action”
starting in the 1990s (Hanzlick, 2007); in recent years, the pace of conversion seems to be
picking up again (Denham et al., 2022).

Two main differences distinguish ME and coroner systems from each other, and both point
to reasons for the former’s advantage over the latter. The first difference concerns qualifica-
tion and professionalism. ME offices are held by medical professionals—usually physicians,
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often pathologists or forensic pathologists—who additionally receive special training and
certification in death investigation (Hanzlick & Combs, 2007; IOM Committee, 2003). This
type of training is seldom provided in medical schools or healthcare facilities, making MEs
more competent death certifiers than other healthcare professionals. On the other hand,
neither such qualification nor training is required of coroners, and they are almost always
laypeople who need as little as a high school diploma to qualify for the job (Choi & Gulati,
2017; IOM Committee, 2003). The deficiency in knowledge and training makes coroners
less capable of the task of investigating deaths: coroner systems have been found to be less
efficient and more error-prone than ME systems (Choi & Gulati, 2017; Denham et al., 2022;
Flynn, 1955).

The second difference that sets the two systems apart pertains to the method of selection
for each type of office. MEs are appointed, whereas coroners are usually elected (IOM
Committee, 2003). The perceived electoral mandate of coroners is one of the main arguments
made against the conversion to ME systems (Flynn, 1955; IOM Committee, 2003). But
the flip side of representing the will of the electorate is that the electoral system provides
incentives for coroners to respond to political pressure, and voters’ demands may not always
align with what is good for society (Choi & Gulati, 2017; “Politics of Death”, 2022). In the
case of COVID-19, where politics and public health have become so inextricably intertwined,
it is conceivable that the conflict of interests can lead elected coroners to make questionable
decisions. Given their authority in death certification, coroners may, for instance, choose to
omit COVID-19 as a cause of death in the absence of a positive laboratory test, even though
CDC guidelines say it should be listed as long as certain clinical criteria are met; they may
also remove COVID-19 from a death certificate bowing to pressure from the family of the
deceased (Bergin et al., 2021; Bordelon, 2021; “Politics of Death”, 2022). In their Benford’s
law analysis, Eutsler et al. (2023) find descriptive evidence that counties with MEs were less
likely to see politically-motivated underreporting than those with coroners. Some descriptive
works that estimate excess deaths from COVID-19, such as Paglino et al. (2023), point out
that regions with higher discrepancies between reported COVID deaths and estimated excess
deaths were more likely to have coroners rather than MEs.

Laws governing ME/C offices vary greatly by state, and the offices differ not only in
the manner of selection of ME/Cs, but also in their structure, operation and procedures
(CDC, 2023b; Hanzlick, 1993). The United States Department of Justice conducts five-
yearly censuses of ME/C countries nationwide. The most recent one, conducted in 2018
(Brooks, 2021), shows that ME/C offices vary in size of jurisdiction, manpower, budget and
caseload, all of which are positively correlated. For example, on average, coroner offices
serving counties with a population larger than 250,000 have a staff of 15 people, whereas
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those in counties with a population smaller than 25,000 only employ two people. Employees
of the office act on behalf and under the authority of the ME/C, who serves as the primary
death investigator and is responsible for completing the death certificate (Hanzlick, 1996). It
is customary in the literature examining the effect of death investigation systems to treat the
ME/C office as a unitary entity without distinguishing between the roles of the overseeing
ME/C and other staff members of the office (e.g. Denham et al., 2022; Klugman et al.,
2013), and I adopt the same approach in this paper.

3 Data

The data used for my analysis mainly consists of two parts. Mortality data comes from the
Wide-ranging ONline Data for Epidemiologic Research (WONDER) system maintained by
the CDC (2023a), and includes monthly all-cause (i.e. total) death and COVID death counts
at the county level in 2020 and 2021, along with each county’s urban–rural classification
according to the National Center for Health Statistics’ 2013 scheme (the most recent update
to the scheme). While CDC WONDER contains arguably the highest-quality mortality data
for the United States, its privacy rules introduce one complication to my analysis. In order
to avoid revealing individual identities, CDC wonder suppresses death counts when they
are below 10; instead of the actual value, the death count is replaced by a dedicated code.
Counts of zero are not suppressed. The suppression hence results in interval-censored data,
with death counts between 1 and 9 concealed. I will address this issue when I introduce my
empirical models in Section 4.

I include three types of death counts in my data: all-cause deaths, deaths where COVID-
19 is listed as a cause of death, and deaths where COVID-19 is listed as the underlying cause
of death. On the U.S. standard death certificate, up to 20 causes of death can be listed to
form a “chain of events that directly cause the death” (see Figure 1). The first listed cause
is the immediate one, and the last the underlying one, which initiated the chain. The main
analysis focuses on deaths where COVID-19 is mentioned anywhere in the list of causes, i.e.
the most broadly-defined COVID deaths based on death certificate data. Death counts with
COVID-19 listed as the underlying cause are used for supplemental analysis.

Additionally, I obtained data on types of death investigation office and party affiliations
of elected coroners in both 2017 and 2021. This data is generously provided by by Matthew
Isbell, a political data analyst. He manually compiled the data from state and local govern-
ment websites and directories depending on where states store and publish such information,
and crosschecked it with multiple sources, including the CDC (2023b). To the best of my
knowledge, this is the first time such data has been gathered and used in empirical research:
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CAUSE OF DEATH (See instructions and examples) 
32. PART I.  Enter the chain of events--diseases, injuries, or complications--that directly caused the death.  DO NOT enter terminal events such as cardiac

arrest, respiratory arrest, or ventricular fibrillation without showing the etiology.  DO NOT ABBREVIATE.  Enter only one cause on a line.  Add additional 
lines if necessary. 

   IMMEDIATE CAUSE (Final 
   disease  or condition --------->      a._____________________________________________________________________________________________________________ 
   resulting  in death)     Due to (or as a consequence of): 

   Sequentially list conditions,         b._____________________________________________________________________________________________________________ 
   if any,  leading to the cause        Due to (or as a consequence of): 
   listed on line a.  Enter the  
   UNDERLYING CAUSE          c._____________________________________________________________________________________________________________ 
   (disease or injury that         Due to (or as a consequence of): 
   initiated the  events resulting 
   in death) LAST            d._____________________________________________________________________________________________________________ 

Approximate 
interval: 
Onset to death 

  _____________ 

  _____________ 

  _____________ 

  _____________ 

Figure 1: Part of the U.S. standard certificate of death

Elected partisan
Elected non-partisan
Combined office elected
Coroner appointed
Medical examiner appointed
Other office handles coroner duties
No coroner office in the stateNo coroner office in the state1

Figure 2: Type of death investigation office and method of selection in 2021

while earlier research on the U.S. death investigation systems at the local level, such as Den-
ham et al. (2022), has utilized data on office type, mine is the first to focus on the effect of
coroner partisanship.

Figures 2 and 3 provide a visualization of the data Isbell collected. In these maps,
I only highlight states with at least one coroner office; the rest have either statewide or
county/district-based ME systems.1 As of 2021, 1,276 counties across America elected coro-
ners, with all but six conducting the elections in a partisan manner. A small number (176) of
counties appoint rather than elect coroners, including the entirety of North Dakota. Repub-

1The highlighted states in the maps exclude three states despite their being listed in CDC (2023b) as ones
with coroner or mixed ME/C systems. Texas has a mixed system, with medical examiners in some counties
and the office of justice of the peace handling coroner duties in others. In Nebraska, county attorneys perform
coroner duties. Kansas has a district-based system. These states are excluded from the empirical analysis,
as none have strictly-defined, county-based coroners.
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Democrat
Republican
Third-party
Independent
Non-partisan
Split (multiple coroners)
Appointed/ME/other officeAppointed/ME/other office
No coroner office in the state1

2017

2021

Figure 3: Partisan makeup of death investigation offices in 2017 and 2021
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licans held more coroner offices than Democrats in both years, and made moderate gains in
the 2020 election. Among coroner offices held by either of the two major parties in both 2017
and 2021, Democrats and Republicans held on to 352 and 725 counties, respectively, after
the election; 119 flipped from Democrats to Republicans, and 20 in the opposite direction.

I augment the mortality and ME/C office data with two additional sources. The mid-
2020 county resident population estimates from the United States Census Bureau (2022) are
used to derive demographic characteristics of counties, including the shares of gender, race
and age groups in the population. The 2020 county-level presidential election results are
obtained from the MIT Election Data and Science Lab (2018).2

My main sample consists of 2,367 counties over 22 months, from March 2020 to December
2021, for a total of 52,074 observations. The counties are from 46 states and the District
of Columbia. Three states are excluded as explained in footnote 1. Among the non-ME
counties, I only include those with elected partisan coroners, and drop those with appointed
coroners, elected non-partisan coroners and combined offices to allow for straightforward
comparisons. As can be seen in Figure 2, this selection criterion excludes the entire state
of North Dakota (which appoints coroners), a majority of counties in California, Montana
(both of which elect combined offices) and Nevada (where coroners’ offices are combined
with sheriffs’ offices [CDC, 2023b]), about half of Washington and South Dakota, a third of
Minnesota, and a few counties in eight other states. Some counties in Alaska and Hawaii
are also excluded because of non-perfect matching between jurisdiction definitions from the
three different sources in my data set. Five counties in the sample reported zero COVID-19
deaths in 2020 and 2021. Among the 2,367 counties, 1,270 (53.7%) have elected partisan
coroners, and the remaining 1,097 (46.3%) have MEs. Table 1 shows the partisan breakdown
within the coroner counties before and after the 2020 election. As pointed out previously,
coroners are more likely to be Republican than Democratic.

Table 2 summarizes and compares characteristics both between ME and coroner coun-
ties, and between Democratic-coroner and Republican-coroner counties in 2021. Both pairs
of groups are largely similar in terms of age structure and sex ratio, and any significant
differences are small in magnitude. The racial composition is different within each pair: ME
counties tend to have fewer black residents and more Hispanic ones than coroner counties;
Republican-coroner counties have much more white residents and much fewer black ones
than Democratic-coroner counties. Politically, as expected, Republican-coroner counties
were more in favor of Donald Trump, the incumbent president and Republican presidential

2In addition, I manually collected 2020 county coroner election results, where possible, from various state
and county sources. However, because a vast majority of coroner races were uncontested, the results are not
very informative for my purposes and therefore not included in the data.
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Democrat Republican Other/No party Split

Year 2017 478 (37.6%) 755 (59.4%) 32 (2.5%) 5 (0.4%)
2021 374 (29.4%) 853 (67.2%) 35 (2.8%) 8 (0.6%)

Table 1: Partisan makeup of elected partisan coroners
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Figure 4: 2020 county Republican vote share and coroner partisanship

nominee, than Democratic-coroner ones in the 2020 election; ME counties were more sup-
portive of Joe Biden, the Democratic nominee, and saw a greater leftwards shift compared
to 2016 than coroner counties. Geographically, ME counties are more likely located in the
Northwest and less likely in the Midwest; Republican-coroner counties are much more likely
to be in the Midwest and much less likely to be in the South. Finally, ME counties are more
likely to be metropolitan, defined as being in a metropolitan statistical area. It is also worth
pointing out that while the average population is marginally different between Democratic-
and Republican-coroner counties, a closer look at their distributions reveals that both include
counties of all sizes in roughly similar proportions. This alleviates concerns about different
practices between offices in large and small jurisdictions described at the end of Section 2,
as any effect of such differences should be balanced out between the two parties.

Figure 4 plots the probability of a county coroner being Republican against the county’s
Republican Party vote share (between the two major parties) in the 2020 presidential election.
Coroner party affiliation is highly correlated with presidential vote share, but a regression-
discontinuity (RD) style quadratic fit shows no discrete jump at a cutoff of 50% vote share.
This indicates ticket splitting between the presidential candidate and the coroner candidate
was common, which was in turn likely due to the large proportion of uncontested coroner
races. The close relationship between the two variables, shown here and in Table 2, calls for
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Office type Coroner party (2021)

Coroner ME Difference Democrat Republican Difference

(ME− C) (R−D)

Population, Jul 2020 est. 61,322 165,426 104,104*** 70,858 57,926 −12, 933*

(109,287) (468,183) (13,545) (150,140) (87,539) (6,848)

Share of age group (%):

0 to 19 24.658 23.708 −0.950*** 24.346 24.819 0.474**

(3.147) (3.478) (0.136) (2.947) (3.182) (0.193)

20 to 29 12.034 11.973 −0.061 12.491 11.813 −0.677***

(2.822) (3.024) (0.120) (3.175) (2.629) (0.174)

30 to 49 23.702 23.627 −0.075 23.669 23.718 0.049

(2.325) (2.793) (0.105) (2.288) (2.315) (0.143)

50 to 64 20.430 20.627 0.196** 20.412 20.445 0.033

(2.083) (2.390) (0.092) (2.050) (2.105) (0.130)

65 to 74 11.447 11.894 0.447*** 11.429 11.445 0.015

(2.230) (2.874) (0.105) (2.075) (2.292) (0.138)

75 to 84 5.692 6.002 0.310*** 5.646 5.713 0.067

(1.258) (1.774) (0.063) (1.254) (1.265) (0.078)

85 and above 2.037 2.170 0.133*** 2.007 2.047 0.040

(0.621) (0.704) (0.027) (0.588) (0.632) (0.038)

Share of male (%) 50.230 50.207 −0.023 49.917 50.327 0.410***

(2.325) (2.056) (0.091) (2.409) (2.221) (0.141)

Share of racial group (%):

White 82.712 83.794 1.083 73.836 86.988 13.153***

(18.049) (15.081) (0.690) (23.773) (12.587) (1.042)

Black 13.010 8.796 −4.214*** 22.145 8.689 −13.456***

(17.896) (12.289) (0.641) (24.080) (11.901) (1.029)

Hispanic 5.754 8.989 3.235*** 5.499 5.901 0.402

(6.867) (11.337) (0.380) (7.302) (6.763) (0.430)

2020 pres. vote share (%):

Democratic (Biden) 28.313 33.315 5.003*** 34.963 24.959 −10.004***

(14.188) (16.337) (0.628) (17.049) (11.368) (0.828)

Republican (Trump) 61.256 51.122 −10.134*** 53.237 64.959 11.721***

(17.626) (18.493) (0.743) (19.938) (15.323) (1.046)

Shift to GOP vs 2016 −3.728 −7.146 −3.418*** −3.458 −3.999 −0.541

(10.988) (11.900) (0.471) (9.266) (11.822) (0.689)

Region (1 = yes):

Northeast 0.072 0.105 0.033*** 0.048 0.076 0.028*

(0.258) (0.306) (0.012) (0.214) (0.265) (0.016)

Midwest 0.339 0.268 −0.071*** 0.217 0.400 0.183***

(0.474) (0.443) (0.019) (0.412) (0.490) (0.029)

South 0.469 0.509 0.039* 0.650 0.390 −0.259***

(0.499) (0.500) (0.021) (0.478) (0.488) (0.030)

West 0.120 0.119 −0.001 0.086 0.134 0.048**

(0.325) (0.323) (0.013) (0.280) (0.340) (0.020)

Metro area (1 = yes) 0.354 0.470 0.117*** 0.318 0.374 0.056*

(0.478) (0.499) (0.020) (0.466) (0.484) (0.030)

n 1,270 1,097 — 374 853 —
Levels of significance: *** = .01, ** = .05, * = .10.

Table 2: Descriptive statistics for sub-samples
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controlling for the presidential vote in my empirical specification. On the other hand, the
lack of a jump at the 50% level precludes the adoption of a fuzzy-RD design.

Before moving on to econometric analysis, I take inspiration from works like Eutsler et
al. (2023) and Campolieti (2022) and check for signs of underreported COVID-19 deaths
using a mathematical tool. Benford (1938) described the following phenomenon. In many
sets of naturally-occurring numbers, the leading digits follow a probability distribution where
the smaller numbers occur more often than larger numbers: the probability of the leading
digit being d ∈ [1, 9] equals P (d) = log10

(
1 + 1

d

)
, with P (1) ≈ 0.301, P (2) ≈ 0.176, ...,

and P (9) ≈ 0.046. Similar distributions also exist for non-leading digits: for example,
0 is the most likely second digit (probability 0.120), and 9 the least likely (probability
0.085). Deviations from the Benford distributions in supposedly naturally-occurring data
may indicate data manipulation, and Benford’s law has been successfully used to detect
fraud in a wide range of contexts (Mebane, 2006; Nigrini, 2012). Eutsler et al. (2023) argue
that daily COVID death counts are likely to meet the necessary conditions for the data to
satisfy the law, and find higher frequencies for small leading digits in the reported death
counts than the theoretical distribution predicts, pointing to possible underreporting. In the
case of monthly CDC WONDER data, despite the censoring of death counts below 10, the
law should still hold for the remaining data with higher orders of magnitude (Benford, 1938)
and, in any case, for the second digits of the death counts as they are not affected by the
censoring.

Figure 5 illustrates the comparison of observed frequencies for the leading and second
digits with the theoretical Benford’s law distributions across subsamples grouped by office
type, or by the party affiliation of coroner in each year (for example, the subsample “Demo-
cratic 2020” only includes death counts in the year of 2020 in counties with a Democratic
coroner in that year). Two patterns stand out from the charts. First of all, for both the first
and second digits, low (high) digits appear more (less) frequently in COVID death counts
than predicted by the corresponding Benford distribution, but the observed and theoretical
distributions seem to match much better for all-cause death counts, confirming the applica-
bility of Benford’s law to my data set while indicating possible underreporting of COVID
deaths. Secondly, the extent of deviation of COVID death counts from Benford distribu-
tions is similar across all subsamples, and there does not appear to be clear visual evidence
suggestive of systemic underreporting by either office type or either party in either year.

Nigrini (2012) proposes the use of the mean absolute deviation (MAD) as a testing
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Figure 5: Observed frequencies of leading and second digits vs. Benford’s law distributions

statistic for conformity to Benford’s law. It is defined as

MAD =
1

D

D∑
d=1

|OPd − TPd| ,

where D is the total number of possible digits in the position (9 for the leading digit and 10
for all thereafter), and OPd and TPd are the observed and theoretical proportions of digit
d. The smaller the statistic, the closer the conformity. In Table 3, I calculate the MAD for
both the leading and the second digits across all subsamples and compare them to Nigrini’s
(2012, p.160) critical values for different levels of conformity. The statistical tests reported
in panels (a) and (b) confirm my visual observation: the MAD is vastly higher for COVID-19
deaths than for all-cause deaths in every case. Tests for both the leading and second digits
also indicate that ME counties are subject to less underreporting than coroner counties. In
terms of coroner party affiliation, however, neither party seems to reliably and significantly
outperform the other in both years. Panel (c) focuses on the leading digits of COVID death
counts in major-party-coroner counties, and calculates the MAD in each year for counties
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(a)
Leading digits: ME Coroner Dem 2020 Dem 2021 Rep 2020 Rep 2021
COVID deaths 0.0452× 0.0623× 0.0642× 0.0547× 0.0650× 0.0621×

All-cause deaths 0.0104** 0.0220× 0.0315× 0.0303× 0.0172× 0.0182×

(b)
Second digits: ME Coroner Dem 2020 Dem 2021 Rep 2020 Rep 2021
COVID deaths 0.0098** 0.0127× 0.0140× 0.0101* 0.0123× 0.0170×

All-cause deaths 0.0019** 0.0020*** 0.0059*** 0.0036*** 0.0033*** 0.0020***

(c)
Leading digits: Dem hold Dem to Rep Rep hold Rep to Dem
2020 0.0605× 0.0807× 0.0654× 0.0581×

2021 0.0603× 0.0800× 0.0601× 0.0339×

Levels of conformity: *** = close conformity, ** = acceptable conformity, * = marginally acceptable conformity, × = nonconformity

Table 3: Mean absolute deviation (MAD) test for Benford’s law conformity

that saw a party switch and those that didn’t. The tests again suggest non-conformity across
the board, although there now appears to be indicative evidence of a pre-existing gap between
switch and no-switch counties: Democratic-coroner counties that flipped Republican already
had a higher MAD in 2020 than those that didn’t flip, and Republican-coroner ones that
flipped had a lower MAD in 2020 than their no-flip counterparts. However, the gaps seem to
have persisted in 2021 without growing in size (a smaller MAD in Republican-to-Democratic
counties in 2021 is likely due to a small sample size of 110), suggesting the actual party
switch did not exacerbate the pre-existing differences. Instead, these differences are probably
attributable to factors other than the death investigation system, such as public attitudes
towards COVID death certification and prevalent practice in the healthcare facilities.

4 Empirical Methodology

OLS Difference-in-differences framework

I employ a difference-in-differences strategy in my empirical analysis. In order to examine
the effect of coroner partisanship on reported deaths, I leverage party flips in coroners’
offices in the 2020 election. Because of the minimal number of counties that had third-
party/independent coroners or offices with split party control, it becomes impractical to
estimate the effect of party flips either to and from these affiliations. Hence I confine the
analysis to counties where the coroner belonged to one of the two major parties in both
years. This leaves me with 1,216 counties (out of 1,270 coroner counties) for a total of
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26,752 observations. The basic diff-in-diff specification is given by the regression model

yit = α0 + αt + η × Postt + β1 ×DtoRi + β2 ×DtoRi × Postt

+ γ0 ×Ri + γ1 ×RtoDi + γ2 ×RtoDi × Postt + Z ′
itθ + ϵit,

where yit is the death count in county i in month t; αt is the month fixed effect; DtoRi

and RtoDi are indicator variables that equal 1 if the coroner’s office in county i flipped
from Democratic to Republican, or from Republican to Democratic, in the 2020 election,
respectively; Ri = 1 if county i had a Republican coroner in 2020; Postt = 1 if month t is
January 2021 or later, when newly elected coroners were in office; Xit is a vector of covariates,
including 2020 presidential election vote shares, the shift towards the Republican Party
between 2016 and 2020, population and its polynomials (up to third-order) and logarithm,
fixed effects for state, urbanization status, and demographic (age, gender, race) groups, as
well as region and month fixed effects and their interaction (to roughly account for the
different timing of COVID-19 waves in different U.S. regions). The coefficients of interest
are β2 and γ2, which capture the effects on reported deaths of a Democratic-to-Republican
or a Republican-to-Democratic flip, under the identifying assumption of parallel pre-trends
between counties that had coroners from the same party in 2020 but different ones in 2021.
Because the coroner’s office only has an effect on COVID death counts through its capacity for
medicolegal death investigation and does not affect local public health policy, and assuming
the latter has been sufficiently controlled for using the presidential election vote shares, these
coefficients of interest represent the effects of coroner party changes alone.

Given the structure of my data set, I estimate the equivalent (and more symmetric)

yit = α0 + αt + ηPostt +
3∑

k=1

(ϕkChangeki + δkChangeki × Postt) + Z ′
itθ + ϵit, (1)

where Change1i, Change2i and Change3i are a set of indicator variables for the coroner
party change in the 2020 election (k = 1 means “Republican hold”, 2 means “Democratic
to Republican flip”, 3 means “Republican to Democratic flip”, and “Democratic hold” is the
omitted group). In this specification, the coefficients of interest are represented by δ2 and
δ3−δ1, which are equal to β2 and γ2 from Equation (1), respectively. I also allow for dynamic
treatment effects by estimating the alternative specification

yit = α0 + αt +
3∑

k=1

(ϕkChangeki + τktChangeki) + Z ′
itθ + ϵit, (2)
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where the effect of a Democratic-to-Republican (or Republican-to-Democratic) shift in month
t compared to the reference month is captured by τ2t (or τ3t − τ1t).

Considerations about data censoring

As mentioned in Section 3, CDC WONDER censors low death counts due to privacy concerns,
i.e. to avoid the identification of individuals. One straightforward solution is to estimate
Equation (2) using a standard tobit model (Tobin, 1958) and treating the dependent variable
as left-censored below 10.3 The model, which is included in common statistical packages, is
estimated using maximum likelihood estimation (MLE). Without loss of generality and for
the sake of simplicity, I can designate all suppressed death counts yit as equal to 9, a value
not observed for yit elsewhere in the data. Then, assuming a conditional normal distribution
for the true (latent) death count y∗it, the likelihood function for the sample is

L (β, σ) =
∏
yit>9

[
1

σ
φ

(
yit −X ′

itβ

σ

)] ∏
yit≤9

Φ

(
9−X ′

itβ

σ

)
,

and the log-likelihood function is

logL (β, σ) =
∑
yit>9

log

[
1

σ
φ

(
yit −X ′

itβ

σ

)]
+

∑
yit≤9

log Φ

(
9−X ′

itβ

σ

)
, (3)

where φ (·) and Φ (·) are the probability density function and cumulative density function of
a standard normal distribution, respectively.

There are two main drawbacks to this standard approach. Firstly, since death counts of
zero are actually not censored, treating them as such means discarding a large amount of
information in the data (out of the 52,074 county-month observations, 12,895, or close to a
quarter, had a death count of zero). Secondly, the tobit model assumes a conditional normal
distribution for the dependent variable, which may not be the most suitable assumption for
death counts. I therefore propose two alternative regression models to address the censoring
issue.

The first model is a slight modification of the standard tobit model that allows me to
make use of the zero counts. The data is treated (correctly) as interval-censored on [1, 9].
Additionally, under the assumption of normal distribution, any yit = 0 can be considered a
“censored” value for a true y∗it < 0. The log-likelihood function then becomes

3Censored regression models are only suitable for data where the dependent variable is censored based
on a fixed threshold, which is the main reason why I use raw death count rather than death rate as the
dependent variable.
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logL (β, σ) =
∑

yit>9

log

[
1

σ
φ

(
yit −X′

itβ

σ

)]
+

∑
yit=9

log

[
Φ

(
9−X′

itβ

σ

)
− Φ

(−X′
itβ

σ

)]
+

∑
yit=0

log Φ

(−X′
itβ

σ

)
, (4)

and I can estimate the coefficients β and σ using MLE.
My second model is a modification of the standard Poisson regression model. I assume

that the dependent variable y∗it follows a Poisson instead of normal distribution, a more
accurate assumption for death counts (Scott, 1981), and that the logarithm of its condi-
tional expectation is a linear combination of the covariates, i.e. logE (yit|Xit) = X ′

itβ, or
E (yit|Xit) = exp (X ′

itβ). Because the probability mass function of a Poisson distribution
with expectation λ is

f (k;λ) =
λke−λ

k!
,

in the standard Poisson regression model, which is also estimated using MLE, the likelihood
function would be given by

L (β) =
∏
i,t

exp (yitX
′
itβ) exp

(
−eX

′
itβ
)

yit!
,

and the log-likelihood function

logL (β) =
∑
i,t

[yitX
′
itβ − exp (X ′

itβ)− log (yit!)] .

Now I modify the Poisson regression model to allow for interval censoring. When yit is
interval-censored on [1, 9] and designated a value of 9, the likelihood function becomes

L (β) =
∏
yit ̸=9

exp (yitX
′
itβ) exp

(
−eX

′
itβ
)

yit!

∏
yit=9

9∑
k=1

exp (kX ′
itβ) exp

(
−eX

′
itβ
)

k!
,

which gives the log-likelihood function

logL (β) =
∑
yit ̸=9

[
yitX

′
itβ − exp

(
X ′

itβ
)
− log (yit!)

]
+

∑
yit=9

log

 9∑
k=1

exp (kX ′
itβ) exp

(
−eX

′
itβ

)
k!

 .

(5)

I can then estimate the parameter β using MLE. I prefer this interval-censored Poisson model
to the interval-censored tobit model because of the more realistic distribution assumption.
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5 Estimation Results

ME counties vs. coroner counties

I begin by presenting comparisons between counties with different types of death investi-
gation offices. It is important to stress from the outset that the following results are only
descriptive, since my identification strategy does not extend to ME–coroner comparisons.
Instead of diff-in-diff, these are simple-difference regressions with the same set of controls as
in my main specifications and with the ME indicator interacted with the month indicators.
Figure 6 displays the expected deaths by month based on a standard tobit (T) regression,
an interval-censored tobit (T-IC) regression, and an interval-censored Poisson (P) regres-
sion, counterparts of Equations (3), (4) and (5), respectively. Each regression is run twice,
with COVID-19 deaths and all-cause deaths as the dependent variable. Standard errors are
clustered at the state level. The plots display point estimates and 95% confidence intervals.

I make a few observations from these estimates. Firstly, the shapes of the curves, even
after controlling for covariates, closely follow the monthly COVID death tolls in the U.S.,
which saw its first three peaks of mortality in April 2020, January 2021 and September
2021. Secondly, the three sets of results have clear qualitative similarities, but the standard
tobit model produces very large standard errors whereas estimates from the Poisson model
are the most precise, with the exception of March and April, 2020, when the U.S. outbreak
was concentrated in a small region. Thirdly, although results from the COVID-19 death
regressions seem to suggest ME and coroner counties sometimes see statistically significant
gaps in either direction in the number of reported COVID deaths in certain months, the
same is true of all-cause deaths, with the gap often similar in sign and often at least as large
in magnitude, and neither measure shows consistent underreporting by one type of county
compared to the other. This indicates that both sets of differences are almost certainly
driven by other county characteristics which are not sufficiently accounted for. Therefore,
the results underscore the fact that these comparisons are correlative and descriptive and
should not be used to derive causal conclusions about the effect of death investigation system
types.

Democratic-coroner counties vs. Republican-coroner counties

I now move to the main analysis of the paper and examine the effect on reported deaths of
party switches in the 2020 election. In the first four columns of Table 4, I report coefficient
estimates from counterparts of Equation (1), the single-period diff-in-diff specification. I use
both the interval-censored tobit and Poisson models, with either COVID or all-cause deaths
as the dependent variable. Figures 7 and 8 illustrate the dynamic effects from counterparts
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Figure 6: Comparison of reported COVID-19 and total death counts between ME and coroner
counties
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of Equation (2), showing point estimates and 95% confidence intervals. December 2020 is
the reference month in Figure 8. Standard errors are clustered at the state level. In order to
more accurately capture any change in death counts immediately before and after the party
change in January 2021, and to strip out the volatile initial outbreak in Spring 2020, the
models reported in Table 4 restrict the sample to the 10-month period between August 2020
and May 2021, leaving me with slightly less than half of my coroner partisanship subsample.

I first examine the results from the simple diff-in-diff models, with one set of Changeki×
Postt interaction terms to capture the effect of party changes. In Table 4, the coefficients
of interest are δ2, which represents the effect of a switch from a Democratic to a Repub-
lican coroner, and δ3 − δ1, which measures the effect of the opposite switch. In both the
interval-censored tobit model and my preferred Poisson model, the point estimates for these
coefficients in the COVID death regression have signs that are consistent with the theory
of political influences on Republican coroners (δ2 < 0 and δ3 − δ1 > 0). The tobit model
produces no statistically significant estimate out of all four (two coefficients each for COVID
and all-cause deaths), but three from the Poisson model are significant at the 1% level.

The fact that estimates for both δ2 and δ3−δ1 are highly significant with all-cause deaths
as the dependent variable should raise concerns, as it suggests that a change in coroner
partisanship has an effect on the overall number of deaths in a county, which seems unlikely
and points to issues with model specification. On the other hand, it should be noted that
these point estimates are much larger in magnitude in the COVID death regressions than in
those for all-cause deaths. In a Poisson regression, a coefficient on an independent variable is
interpreted as the marginal expected effect of the variable on the log, not actual, dependent
variable; as all-cause deaths are, by definition, larger in value than corresponding COVID
deaths, the difference in magnitude is to be expected even if the true marginal effects are in
fact the same on the pre-log death count. Nevertheless, it turns out the larger estimates in
the COVID death regressions do translate to a larger effect on death counts, which can be
seen from the bottom four panels in Figure 8.4 Here, I give one possible interpretation of
these results. Although I am unable to perfectly control for correlating factors that affect the
difference in all-cause death counts between counties before and after the party change, such
differences in COVID deaths move in the same direction but to a much larger extent, implying
an increase in COVID deaths as a share of all-cause deaths.5 Given that the estimated δ2

in the COVID death regression is significant and δ3 − δ1 is not, this interpretation would
4Normally, I can use the margins command in STATA to explicitly calculate the marginal effect of

independent variables on the pre-log dependent variable. But the command fails to work properly in this
case, most likely due to empty cells.

5Ideally, I would test this using the share of COVID deaths as the dependent variable in regressions, but
data censoring makes this impossible.
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COVID-19 deaths All-cause deaths COVID deaths All-cause deaths
(T-IC) (P) (T-IC) (P) ≤ 10 ≤ 10

Post = 1 5.212 0.256 −0.115 0.000553 −0.0455 −0.0439**
(4.676) (0.588) (1.624) (0.0301) (0.0319) (0.0165)

Party flip (Change):
Rep hold (ϕ1) −1.729* −0.111*** −5.648** −0.0785*** −0.0116 0.0114

(0.889) (0.0370) (2.420) (0.0118) (0.0180) (0.0168)
D–R flip (ϕ2) −0.0743 0.0141 −1.220 −0.00627 0.000862 −0.00220

(0.763) (0.0589) (1.776) (0.0188) (0.0207) (0.0176)
R–D flip (ϕ3) −3.077 −0.0934 −9.149 −0.0608** 0.00950 0.0123

(2.945) (0.0741) (8.280) (0.0296) (0.0359) (0.0386)
Interactions between Change & Post = 1:

R hold (δ1) 0.844 -0.0339 1.124 -0.00885 0.0421* −0.00469

(0.643) (0.0508) (0.764) (0.0120) (0.0207) (0.00886)
D–R flip (δ2) −0.612 −0.163*** 0.629 −0.0334*** 0.0130 0.0113

(0.498) (0.0534) (0.792) (0.0117) (0.0267) (0.0172)
R–D flip (δ3) 1.389 0.0920 1.141 0.0342*** −0.0461 −0.0449*

(2.861) (0.0657) (2.785) (0.0118) (0.0275) (0.0219)
δ3 − δ1 0.545 0.126 0.0162 0.0431*** −0.0882** −0.0402*

(3.006) (0.0786) (2.832) (0.0116) (0.0385) (0.0223)
Population (’00,000) 6.872*** −0.152** 89.03*** −0.0592* −0.325*** 0.648***

(1.969) (0.0660) (7.363) (0.0331) (0.0399) (0.0527)
Population2 0.402 0.0191* −1.989 0.00788 0.0489*** −0.100***

(0.442) (0.0103) (2.049) (0.00502) (0.00811) (0.0114)
Population3 −0.0318 −0.000783 0.00926 −0.000331 −0.00219*** 0.00464***

(0.0227) (0.000482) (0.122) (0.000237) (0.000470) (0.000725)
log (population) 5.949*** 1.056*** 8.568*** 1.020*** −0.0937*** −0.406***

(0.641) (0.0372) (1.775) (0.0222) (0.0192) (0.0244)
2020 pres. vote share (%):

Republican 0.227*** 0.0189*** 0.598*** 0.0106*** −0.00385*** −0.00331**
(0.0395) (0.00277) (0.113) (0.00124) (0.000516) (0.00128)

Shift to GOP −0.135** −0.0101* −0.278 −0.00534 0.00209* 0.00306*
(0.0682) (0.00565) (0.301) (0.00380) (0.00116) (0.00150)

Share of age group (%):
0 to 19 −1.473** −0.288*** −6.698*** −0.161*** 0.0335*** −0.00291

(0.607) (0.0380) (1.960) (0.0282) (0.00678) (0.0205)
20 to 29 −1.570** −0.297*** −6.851*** −0.152*** 0.0357*** −0.00694

(0.634) (0.0339) (1.996) (0.0271) (0.00665) (0.0214)
30 to 49 −1.697*** −0.301*** −7.372*** −0.155*** 0.0340*** −0.00632

(0.621) (0.0351) (1.939) (0.0278) (0.00834) (0.0223)
50 to 64 −1.526** −0.295*** −6.334*** −0.144*** 0.0321*** −0.00550

(0.678) (0.0329) (2.043) (0.0279) (0.00523) (0.0224)
65 to 74 −1.475*** −0.320*** −4.618*** −0.148*** 0.0298*** −0.000189

(0.569) (0.0369) (1.660) (0.0267) (0.00954) (0.0212)
75 to 84 −0.998 −0.227*** −7.432*** −0.108** 0.0389*** −0.0337

(0.749) (0.0630) (2.815) (0.0494) (0.0108) (0.0302)
Share of male (%) −0.0210 −0.00641 0.132 −0.0174** 0.000744 0.0112***

(0.106) (0.0120) (0.366) (0.00695) (0.00240) (0.00319)
Share of racial group (%):

White −0.0731 0.00878 −0.266 0.00176 0.00120 0.000598
(0.0560) (0.00849) (0.267) (0.00436) (0.000870) (0.000966)

Black 0.123* 0.0228*** 0.220 0.0111*** −0.00151 −0.00264***
(0.0655) (0.00828) (0.308) (0.00422) (0.00124) (0.000611)

Hispanic 0.123** 0.00579 0.164 0.00207 −0.00127 −0.00136

(0.0612) (0.00362) (0.263) (0.00212) (0.000781) (0.00127)
Intercept 161.3*** 30.08*** 770.9*** 19.47*** −2.412*** −0.190

(61.64) (3.442) (176.5) (2.797) (0.648) (2.186)
Fixed effects State, region, month, region×month, urbanization
n 12,160
Levels of significance: *** = .01, ** = .05, * = .10.

Table 4: Diff-in-diff regression estimates
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Figure 7: Comparison of reported COVID-19 and total death counts, by coroner party switch

mean that a county’s switch from a Democratic to a Republican coroner led to a decrease in
reported COVID deaths compared to counties held by Democratic coroners, but the reverse
party flip had no such effect in the opposite direction.

In the last two columns of Table 4, I estimate OLS regressions where the dependent vari-
able is an indicator for death counts smaller than 10, i.e. either counts of zero or suppressed
counts. The estimates for δ3 − δ1 are significant and negative in both the COVID and all-
cause regressions, and those for δ2 are not significant in either. The results seem to suggest
that a switch from a Republican to a Democratic coroner makes a county less likely to have
such small COVID death counts (a larger effect than on all-cause deaths) than it otherwise
would have. But because the threshold of 10 is completely arbitrary, I refrain from drawing
stronger conclusions based on these results.

I now consider the dynamic effects illustrated in Figures 7 and 8. Similar to the preced-
ing subsection on ME/C comparisons, estimates from the interval-censored tobit model are
much less precise relative to their magnitude, as Figure 8 most clearly demonstrates. Both
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figures also show that estimates involving Republican-to-Democrat switches are less precise
in general, due to the small number of such flips in the 2020 election.

The Poisson regression plots in Figure 8 (bottom four panels) reveal some interesting
patterns. Focusing on the immediate vicinity of the party switch (August 2020–May 2021),
estimates from the COVID death regressions indicate statistically significant effects of party
changes in both directions. Compared with December 2020, COVID death counts were not
statistically different between switch and no-switch counties between August and November,
indicating parallel pre-trends. Death counts between the two groups of counties started to
significantly diverge in February or March 2021. Democratic-coroner counties that switched
Republican began to see a decrease in reported COVID deaths compared to their counter-
parts that stayed Democratic, and Republican-coroner counties that switched saw higher
death counts. The effect lasted for several months before mostly tapering off through the
rest of the year. Whereas qualitatively similar trends can be observed in the all-cause death
plots, the estimates are less precise and have smaller magnitude just like in the single-period
diff-in-diff regression in Table 4. This is the strongest evidence yet from this analysis that
supports the theory of politically incentivized death reporting.

Finally, I repeat the analysis in this subsection after replacing my death measure with
deaths where COVID-19 was the underlying cause, instead of those with COVID-19 listed as
a cause of death. The results are almost identical, only with slightly larger standard errors of
the estimated coefficients of interest. This is to be expected: the two death count measures
turn out to be highly correlated, but the underlying death count is smaller than or equal to
the more widely defined measure, leading to slightly more suppressed counts. As they do
not affect my analysis, I omit those results.

6 Discussion

Do partisan coroners manipulate reported COVID-19 death counts for political expediency?
The analysis of mortality and coroner party affiliation data yields evidence that is decidedly
mixed. On one hand, both the single-period and dynamic diff-in-diff regressions produce
estimates that seem consistent with the concerns raised about Republican coroners. On the
other hand, a few countervailing factors cast doubt on the validity of such theories. The
main issue is that I find non-zero effects in my intended placebo tests that use all-cause
deaths as the dependent variable, although these are much smaller in magnitude and often
less precise. In addition, the dynamic effects I find were relatively short-lived compared to
the duration of the COVID pandemic, suggesting any effects from party switches dissipated
soon into the new coroner’s term. Perhaps more importantly, my most precise estimates
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Figure 8: Dynamic diff-in-diff effect estimates
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(from the Poisson model) are too small to be economically meaningful, and do not point to
large-scale, systemic underreporting of COVID-19 deaths by Republican coroners.

It may be helpful to consider the matter of politically-motivated underreporting in the
bigger context of COVID death reporting in general. As mentioned in the introduction,
there were immense challenges in properly certifying COVID-19 deaths. During the first two
years of the pandemic, estimates put excess deaths in the United States at over 1.1 million
(Paglino et al., 2023; Rossen et al., 2022), while the officially reported COVID-19 death toll
was around 950,000, meaning over 15% of excess deaths were not attributed to the disease.
Some of these deaths will have been due to undocumented or unrecognized COVID infections
(Woolf et al., 2020). As my Benford’s law test in Figure 5 shows, there is strong indication
of underreporting of COVID deaths across death investigation office types, coroner party
affiliations and years. It is conceivable that any politically-motivated manipulation paled
beside such inevitable underreporting and was masked by it. Tactics that would be used
to manipulate death certificates, such as skipping autopsies or requiring positive COVID-19
laboratory tests (Bergin et al., 2021; “Politics of Death”, 2022), may resemble constrained
testing and investigation capacity faced by ME/C offices across the country.

The significant yet small results may also reflect the small number of coroners engaged
in malpractice, the limited scope coroners have for manipulating death certificates, and/or
the relatively small share of COVID-19 deaths passing through ME/C offices as opposed to
being handled in the healthcare system. While I am not equipped to determine the role of
these factors, my findings do suggest that coroners of all affiliations seem to have performed
their duties during the pandemic better than many have feared.

7 Conclusion

Using public-use mortality data from the CDC and original data on medicolegal death in-
vestigation office types and elected coroners’ partisanship, I use a number of tools to test the
effect of death investigation on COVID-19 reporting. I find suggestive evidence that there is
widespread underreporting in COVID-19 deaths, but a cross-sectional comparison between
medical examiner counties and coroner counties does not reveal differing extents of such
underreporting. Employing econometric specifications in a difference-in-differences frame-
work, I find some evidence that counties reported fewer deaths when they switched from a
Democratic coroner to a Republican one after the 2020 election, and vice versa. However,
the magnitude of these differences is too small to have had any meaningful impact in relation
to the scale of the underreporting problem during the pandemic.

Considerable accommodation has had to be made due to the data censoring adopted by
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the CDC, which results in more than half of my observations containing a suppressed death
count. If manipulation did happen to a marginal degree as my findings seem to indicate,
having low-death-count observations in the data would probably help unveil a much clearer
picture of such practice. Therefore, it will be worthwhile to carry out follow-up analysis
if and when such data can be obtained. It might also be possible to obtain measures of
coroner partisanship that can augment party affiliations per se: Farris and Holman (2023),
for example, use a survey to gauge county sheriffs’ agreement with right-wing extremist
ideology and examine its correlation with their strictness in enforcing mask mandates.

Some empirical research has been done to compare the performance of ME and coroner
systems. The political aspect of coroner systems, however, remains overlooked and under-
researched. As the United States continues to become more politicized and polarized, the
subject may merit further research, in areas including infectious disease and beyond, such as
crimes, mental health issues and the opioid crisis. Unfortunately for America, the COVID-19
pandemic is unlikely to be the last time that the integrity of the death investigation system is
put under the microscope. Future research endeavors should aim to strengthen the system’s
resilience against potential biases and maintain public trust in the work it produces.
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